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In this paper, we propose the l(d)-GARCH(p,q) in mean model. It incorporates the volatility model
GARCH(p,q) into the fractionally differenced process I(d). This allows the conditional variance to affect the
mean. Some properties of this process are derived and an approximate maximum likelihood estimation
procedureis proposed.
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1. INTRODUCTION

Modeling volatility of economic time series is an important aspect in financial risk
management. GARCH (Generalized autoregressive conditional heterokedasticity) models are
the most popular in modeling volatility. They are able to effectively remove excess kurtosis
in return series. Moreover, Gokcan (2000) demonstrated that for emerging stock markets,
GARCH model performs better than the nonlinear EGARCH model even if the stock market
return series display skewed distributions. Baillie, Bollerslev and Mikkelsen (1996), and
Chung (2002) modified the GARCH model to incorporate the idea of long-memory fractional
differencing into the volatility model. The resulting volatility model is called the fractionally
integrated GARCH or the FIGARCH model.

In asset pricing, expected returns have been shown to be related to volatility. Risk-averse
economic agents require time-varying premiums as reward for bearing financial risks. Hence,
time s~hes of asset prices must not only depend on their movement overtime but also include
volatility, a measure of risk, as a determinant of price. This inadequacy of the traditional
expectation to explain the observed data has been supported by a series of papers
(Karanosos(200 1».

Engle, Lilien and Robins (1987) introduced the ARCH-M mean model, which allows the
conditional variance to affect the mean. It is also called WN-ARCH(p) in mean model, which
is a white-noise with ARCH-in-mean effects. It incorporates the volatility model ARCH(p)
into a white-noise mean model. Karanasos (2001) extended this model to ARMA with
GARCH-in-mean effects. It incorporates the volatility model (JARCH(p,q) into the general
ARMA(r,s) process. Optimal predictors and the covariance structure of the model were
presented. These results, however, were of theoretical purity and not intended for practical
purposes.

In this paper, we are concerned with the analysis of a long-memory process allowing
volatility to affect the mean. We incorporate GARCH(p,q) volatility into the intermediate­
memory or long-memory process I(d) and we call the model an I(d)-GARCH(p,q) in mean
model. Changing the conditional variance directly affects the. expected return. Unlike the
FIGARCH model, I(d)-GARCH(p,q) need not exhibit long-memory in the variance. This
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model, for instance, implies that the determinant of asset price is not only the time series
movement over time, but also its volatility or the associated financial risk. We present the
moving average representation, the covariance structure and an estimation procedure, which
may be applied for practical purposes.

This paper is organized as follows. In Sections I and 2, we give an introduction and we
discuss preliminary concepts. In Sections 3, we introduce the model and we present the main
results. We then give some concluding remarks in Section 4.

2. IPREL][MINARY CONCEPTS

In this section, we present some concepts and standard results that will be used in the
discussion of the main results.

An ARMA process {X} is usually referred to as a short-memory process since the
autocorrelation between Xt and Xt+k decreases rapidly at an exponential rate to zero as k ~
00, that is, p(k) - c-', k = 1,2,.., where C>O and 0<r<1. Brockwell (1987) defines a long­
memory pro,cess as a stationary process for which p(k) - CJ!d.1 as k~ 00, where C>O and
d < 0.5. In this case, the autocorrelations decay to zero slowly at a hyperbolic rate. For our

00

purpose, if d < °and I Ip(k) I< 00. we call {X} an intermediate-memory process. It is a
k=·oo

00

long memory process when °< d < 0.5 and I Ip(k) I= Q?

k=-oo

Long-memory processes are often modeled by means of the fractionally integrated I(d)
process. (For our purpose, we say that a stochastic process is stationary if it is covariance
stationary.) Afractionally integrated I(d) process {X} is a stationary process such that

(I-Lf X, = Ct

where Cl is white noise , L is the backshift operator such that LXt = Xt.I. (I .u' is the
fractional difference operator. If de (0,0.5), {X} is long-memory process (nonsummable
autocorrelations). If dE(-0.5,0), {X} is an intermediate-memory process (summable
autocorrelations). The upper bound d<0.5 is needed, because for d ~ 0.5, the process is not
stationary. However, the case d>0.5 can be reduced to the case -0.5<d<0.5 by taking
appropriate integer differencing. For instance, if d = lA, then the differenced process
a.u'w, is the stationary solution of (I-Lf X, = Ct with d = 004 and Wt = (I-L)Xt.

Engle, et al (1982) proposed the ARCH (autoregressive conditional heteroskedasticity)
model. It has been useful in explaining and forecasting volatility. The ARCH(q) model
characterizes the distribution of the stochastic error El conditional on the realized values of the
setIt.1 = {e., .....ct•q}:

CtI!,.1 - N(O. hJ.

The ARCH(p) model can be formulated as
_ 2 2 2

h, - ao + alct_1 + a: Ct.2 + ... + aqct-q •

where ao > °and ai~O, i=l, ... ,q, to ensure that the conditional variance is positive. An explicit
generating equation for an ARCH process is

'.
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where 7], - NID(O.J). Clearly, E, is conditionally normal with mean zero and variance h.,

31

Bollerslev (1986) proposed a generalization of the ARCH model, which he termed
Generalized ARCH or GARCH. He suggested that the conditional variance be specified as

J J
h, =ao + a.e.? + ... + aqC,_q- + bih.; + ... + bph,_p, (1)

where ao > 0, ai~O for i=1,... ,q, bi~O for i= l, ... ,p are imposed so that the conditional variance
is strictly positive. Hence, the GARCH(p,q) specifies the conditional variance to be a linear
combination of p lags of the squared residuals and q lags of the conditional variance h., In
Equation (1), if we add and subtract a.h; i=1,2, ... ,q, we get

2 2 * *h, = ao + a,(c,_, -h,_,) + '" + aq(c,_q -h,_q} + b, h,_, + ... + bill hl-lll '

where m = max(p,q), ai =0 for i > q, b, = 0 for i > p, bj* = b, + a., i=1,2, ... ,m and v,= E,2-h,.
Clearly, v, has mean zero and serially uncorrelated. Hence, it can be treated as an innovation.
The ARMA representation of h. is given by

B*(L) b, = A(L)vl (2)

m q

whereB*(x) = 1- ~)aj +b)x} and A(x) = 1 + L>}xi .
i=1 i=1

The unconditional mean of the GARCH(p,q) model is given by

•

q p

E(hJ = an + LaiE(cL)+ IbiE(h,_).
i=1 i=1

Since E(c/) = E( E(c/" 11,_1)) = E(hl) ,

E(e,2) = E1hJ = ao
I \' I ~ q

1- Lbi - La i
i=1 i=1

(3)

...

p q

Hence, we impose the condition L a i +L b, < 1 for the existence of a finite variance of the
i=1 i=1

innovation process { e }. The unconditional variance of CI i$ constant, although the

conditional variance, E( c," 11/-1 ) = hi, changes with time.

3. MAIN RESULTS

In this section, we present some results that may be used in the analysis of the I(d)­
GARCH(p,q) in mean model. We derive the moving average representation of y, in terms of
the innovations CI and Vr. which are shown to be uncorrelated. We also obtain the covariance
of y, and we show that y, is an intermediate-memory or a long-memory process. Finally, we
propose an approximate maximum likelihood estimation procedure of the I(d)-GARCH(p,q)
parameters.
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3.1 The Model
We define the I(d)-GARCH(p,q) in mean model by

(1-Lf y, = OIl, + G,

Gonzaga: Estimating the l(d)-GARCH(p,q)
in Mean Model

(4)

•

where

h, = ao + alG,i + al 8,-/+ ... + aqG'-/ + blh'_1 + ... + bph,_p,
G,ll,_1 - N(O, hJ,

and ao > 0, a, ~ 0 for i=l,oo.,q, b, ~ 0 for i=l,oo.,p, -0.5 < d < 0.5. In the l(d)-GARCH(p.q)
model, we allow the conditional variance to affect the mean. Hence, changing the conditional
variance directly affects the expected return.

3.2 Moving Average Representation
In this section, we give the moving average representation of the I(d)-GARCH(p,q) process
Yt. We express Yt as an infinite linear combination of innovations Ct and v., which are shown
to be uncorrelated. We assume that the stationarity and invertibility conditions are satisfied,
that is, the roots of A(x) and B*(x) lie outside the unit circle. Moreover, we assume that A(x)
and B*(x) have no common zeros.

From Equations (2) and (4), we have

= a.u"e + J A( L)(1-LF" V,
Y, , B *(L)

y, = (1-L)-<I G, + JG(L) v,

where

G(L) = A( L)(1- LT" = f g Ii ,
B *(L) j=O ./

(5)

•
W(L)=(1-LF" = i-», W.= F(j+d)

j=o'/ .I Fi j + 1)F(d)

and I'(e) is the gamma function. Now,

G(L) = C(L)W(L) = [fCiLi)(fWjLj] = f(IciWi_i]Li .
1=0 ./=0 ./=0 ./=0

j

Hence, g, = Ie /Oi_j , where by a similar argument to the derivation of the moving average
j=O

p

coefficients of ARMA model (Brockwell and Davis(l987)), Cj = aj - I b; C j-i with Co = 1,
i=1

aj = 0 for j>m. Thus, the moving average representation of Yt is given by

y, = f(Jgjv t - j +WjC-t _ )

i=O

Now, Cov(Gs,vJ =E(c-svJ-E(c-s)E(vJ, fort,s E Z+. Ifs=t, then
Covie; vJ = E(GsvJ - E(c-JE(v,) = E(c-,(G/ - hJ = E(E(G/ll,_I)) - Eth, E(G,ll,_I)) = o.

'.
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Ifs<t, then
Covte; vJ= E(esvJ - E(es)E(vJ = E(ele/ - hJ = E( E(ese/II,_,) - E(eshJ

= E(esE(e/II,_,)) - E(eshJ= E(esh,) - E(eshJ = O.

If s>t, then
Covie; vJ = E(esvJ - E(esJE(vJ = E(ele/ - hJ = E(es&/) - E(eshJ

= E(E(ese/IIs_')) - E(E(eshMs-')) = E(e/ E(eslIs-JJ) - E(h,E(esl/s_')) = O.
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Thus, in the moving average representation the innovations 1':1 and Vs are uncorrelated for all
+t,s E Z .

3.3 Covariance Structure
In this section, we derive the covariance of Yt . We show that it has hyperbolic decay; hence,
an intermediate-memory or a long-memory process.

From Equation (5), we have
y, = (1-Lfde, + OG(L)v,

Hence,
CovlyJ = COVk ((J-LfdeJ + covl8G(L)vJ + covl[(1-LfdeJ[ OG(L)vJ).

Since E((1-/.;leJ = E(E((1-LleJIL-,)) = 0,
Covl(1 -u'e/) = E (Cov((1 .u'eM/-I)).

From Beran (1994),

COVk ((1-Lyde) = E[var(et 1
/

1_ 1 )(-J / f(J - 2d )]
f(k-d+J)f(J-k-d)

= E(h)(-J/f(J-2d) =E(hJ TJ(k).
f(k-d+J)f(J-k-d)

where E(hJ is defined by Equation (3). Similarly,
Covl(1 -LydvJ) = var(vJ TJ(k) = E(v/) TJ(k) = 2E(h/) TJ(k).

The second term is
Covl8G(L)vJ=Cov(0G(L)vJ=8Cov(C(L)(J-LydvJ

=2E(h/)8 f f(cjcj+hTJ(k-h)).
h=O j=O

Since 1':1 and Vs are uncorrelated for all t,s E Z+, then
d .

Covl[(1-Lf ed[ OG(L)vJ) = O.

Hence, the covariance of Yt is given by

CovlyJ = E(hJ TJ(k) + 2E(h/)8 f f (cjcj+hTJ(k - h)).
h=O j=O

where E(hJ is defined by Equation (3). Taking k=O in Equation (6), we have

(6)
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E(h )f(i 2d) '" '"
Var(yJ = t - 2 + 2£(11/)8 I I (c,c j +h 7]( - h ) ),

(f(i- d)} h=O j=O

•

where Cj are the coefficients in the moving average representation of h, The general
expression for E(h I

2) is quite complicated to be expressed in closed form. However, for
GARCH(I,l), from Karanasos (2002) we have

£(h/) = ag(i+a j ~bj),
(i-a j -b j}{1-3aj -bj -2a jb j )

Note that 7]*(k) = I I(c j c j +h 7]( k - I1 ) ) may be considered as the autocovariance of an
h=O j=O

ARFIMA process with moving average coefficients Cj and error variance 1. From Beran
(1994), as k-eco there is a constant C 1 > 0 such that

1]*(k) ~ C, J!d-'.

Moreover, Stirling's formula gives us
7](k) ~ C2 J!d-'

for some constant C2. Since £(hJ and £(11/) are independent ofk, as k-too
CovlyJ ~ C3 J!d-',

for some constant C3. Hence, I(d)-GARCH(p,q) is stationary and has autocovariance with
hyperbolic decay. Thus, it is also an intermediate-memory or a long-memory process.

From the moving average representation of y" the autocovariance function can also be written
as

ec eo

YI = 8
2
a ; I g jg j+k + a~IaJjaJj+k'

j=O j=O

where crs and cry are the unconditional variances of the innovations CI and VI. Since Ct and Vt

are uncorrelated, from Brockwell and Davis (1987), the autocovariance generating function is
A *(z) = 8a/ G(z)G(z-') + a} W(z) W(z-'). r'< Izi < r

for some r > 1, where

•

G(L) = A(L)(i-LF" = fgjLj,
B * (L) j=O

co

W(L) =(i-LF" =IaJjL
j

.
/=0

3.4 Estimation of Parameters
In this section, we present an approximate maximum likelihood estimation procedure for the
I(d)-GARCH(p,q) in mean model. This method may be used also to estimate the long­
memory parameter d of a pure I(d) model by setting all other parameters zero.

•
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From Equation (4), we have
(I-Li y, = &, + c,

35

where c,II'_I-N(O,hJ. (I-Li =:t r(k-dJ i', and qe) is the gamma function. Let
k=O r(k+i)r(-d)

e = (d. 0. ao. ai, ... ,aq, bi.b,.... ,bp) be the vector of all the parameters to be estimated. Hence,
for a time series with realization {YI. Y2. ..., vtl. the approximate loglikelihood function is
given by

InL(e) = -T In(21t)-~±In(h)~~±(c/J.
2 2 1=1 2 1=1 h,

The computation of the approximate maximum likelihood estimates may be carried out as
follows. With the given values of the parameter vector e = (d. 0. ao, ai, ....aq• bi.b,..... bpJ. we
compute the following recursively:

TIll-i-d.
O<Il:>k 11

STEP 1. ~, = Imld)[Y,-j.- :YJ.
j=O S

deviation, respectively, of Yt and

ill d _ F(k-d)
'k(iD - F(k+i)F(-d)

where Y and s are the sample mean and standard

k = 0,1.2,3...

•

•

STEP 2. Compute h, and Et alternately, that is, compute hi, then El, then h2, then E2, and so on,
where

q p

h, = ao + IalC'-ji + Ib/l'-J
j=1 J=I

C, = 9 - 811,

T ( c
2

)STEP 3. Compute I lu( hI) + _I = R(G).
,=1 h,

STEP 4. Choose G that minimizes R(G).

The pre-sample values of Et for t = 0, -1,-2, ... are all equal to 0, while the values of h, for
t = 0, -1, -2, ... are all equal to 1. These pre-sample values are natural consequence to the fact
that E( is assumed to have mean zero and h, is the conditional variance of the error term;
hence, the sample variance is a natural estimator. The choice of the sample size T and pre­
sample values may be the contentious issues in the analysis.

The approximate maximum likelihood estimates may also be computed from the system of
nonlinear equations involving the partial derivatives with respect to the parameters of the log­
likelihood function.
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Let e = (d. 8, ao. a, ..... aq, bi.b,..... bp) . 7] = (ao, ai, ....aq, bl.b2, .... bp) ,
1-/

e, = Loodd)(YI-k -t5h l _k) ,
k=O

S(BJ = t[ln(h,(l1)) + el~ (0)],
r=/ hi(11)

e~(e)
s,(BJ=ln(h'(7]))+ r •

h,(7])

The approximate maximum likelihood estimate minimizes S(BJ with respect to e. This
amounts to solving the system of q+p+3 nonlinear equations

T •

LS,(0) = 0,
r=/

where

sJ0) =(as,(e ), as,(e) ,....as,(e)IT
ad es ab" I

Note that

as,(e)=2e,(e) a e,(e),
ad h,(7]) ad

as,(0) = 2e,(0) a e,(0) ,
es h,(11) es

as,(0)= Cr~-i +2e,(0) a e(0)_er"(e)cL

aa
i

h,(7]) h,(l1) aai I h/(7]) ,

as,(0)=~+ 2e,(0) a e,(0)- el"(0~hl_/7])
abj hi(11) hi(11) abj h; (11)

where

where ~J(.) is the digamma function,
ae,(0) 1-/

--'--= - Look(d )h
l

_k(7]) ,
ao k=O

ae (0) 1-/
I __ " s: 0<' <---'-'---'- - LJ uCI_k_i' - 1_ q,
aai k=O

ae (0) t-«l

r =-LOhI _ k_/ 77), 15j5p.
abj k=O

These partial derivatives may also help significantly in the derivation of the asymptotic
properties of the estimators.

•

•

••
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3.5 Application
To illustrate the application of the estimation procedure described in the previous section, we
analyze a data set consisting of daily observations of the exchange rate of peso per US dollar
from September 23, 1999 to August 16, 200 I. '

Figure I Daily Peso Per Dollar Exchange Rate (Xt)

Peso Per Dollar Exchange Rate

42 -.r----------,--------.~_.

41 ~~=:=====~...iiil~~~40 ..~..-~-_:__------
39
38
37 +--------'----------.....-;
36 +------------:----:-----------1
35 __.....,.:am_IIIlllD....,.,_.....IIItCI!IIt__"'"""'''''''''''~'!mm''''''''''1l!IImi

Preliminary analysis showed that the given series, XI> does not represent a long-memory
process. Aggregation of the data is implemented to artificially induce long memory. We
consider the series

Zt = (XSt + XSt+1 + XSt+2 + XSt+3 + XSt+4)/5.

.'
The series z,represents the weekly average peso per dollar value. Initial estimate of the long­
memory parameter d gives a fractional value greater than 0.5. This indicates that the series is
not stationary. Hence, the differenced series Yt = z, - Zt-I is obtained and used in the analysis.
An I(d)-GARCH(I,I) is used to model the series Yt. Simultaneous estimation of the
parameters d, ao, a" b, and 8 implementing Steps 1 to 4 is performed using S-PLUS 2000
Professional. Results showed the following estimates of the pararpeters:

d = 0.10, ao = 0.45, a, = 0.10, b, = 0.40, 8 = 0.10.

Hence, the I(d)-GARCH(1, 1) model for Yt is given by
( )0.10 21-L Yt =0.10 (0.45 + O.lOEt_1 + 0.40h t_ l ) + Et.

The corresponding volatility model is given by
h, =0.45 + 0.10Et} + 0.40h t_].

••
Similar procedure allows us fit a pure led) model by setting 8 and the volatility parameters
equal to zero. The led) model for Yt is given by

(1_L)°.0875Yt = Et·

These estimates show that the value of the long-memory parameter is dependent on the
values of 8 and the volatility parameters. Clearly, the expected return of Yt of the I(d)­
GARCH(I,I) model is nonzero; while that of the pure led) model is zero. Further, analysis
comparing I(d)-GARCH(p,q) model and other long-memory models is currently in
preparation.
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4. CONCLUSIONS

In this paper, we presented some results useful in the analysis of the I(d)-GARCH(p,q) in
mean model. Further research may be done on the asymptotic properties of the approximate
likelihood estimators, the best linear predictor for forecasting of future values and model
selection criterion such as AIC for the given model. Some contentious issues in computing
the approximate maximum likelihood estimates, such as the choice of T and the values
assumed in the pre-samples, may be resolved.
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